
Genetic Analysis of Complex Diseases

Neil Risch, in a series of seminal papers in
1990 (1, 2), demonstrated the utility of sib-
pair linkage analysis in identifying genes for
complex genetic traits. In doing so, he defined
what is the current paradigm for the genetic
dissection of common complex genetic diseas-
es. The recent Perspective by Risch and Kath-
leen Merikangas (3) again shapes the future of
human disease gene mapping by defining
what will undoubtedly become the statistical
“state of the art.” Risch and Merikangas ad-
vocate conducting genomic screens based on
association studies of candidate genes using
the transmission disequilibrium test (TDT). It
is important, however, not to infer from their
arguments that current linkage analysis meth-
ods cannot detect most genes underlying com-
plex disease.

Risch and Merikangas extend the cur-
rent paradigm to include anticipated tech-
nological advances. However, the magni-
tude of g (defined as the relative risk in the
heterozygote) in complex traits and the ap-
plication of this approach using current mo-
lecular technology must be considered.

In their formulation, Risch and Merikan-
gas show that a TDT approach is more pow-
erful than a sib pair approach, particularly for
disease alleles with small genetic effects. This
conclusion is based on the sample size re-
quired to detect a gene with a g # 4. They
show that, while sib pair analysis requires a
practical (for example, 100 to 400) number
of sib pairs to detect a gene with g 5 4 and
a disease allele frequency p, between 0.1 and
0.5, the number of sib pairs required becomes
impractical (for example, more than 1000)
when g # 2.

Previously, Risch (1, 2) established the
use of a sibling recurrence risk ratio (ls) to
estimate the power of a sib pair design to
detect linkage. Estimable from epidemiolog-
ic data, ls is calculated as the ratio of the
recurrence risk in siblings of an affected
individual and the population prevalence of
the disorder. This ls represents the overall
recurrence risk ratio, which may result from
the actions of a single gene or multiple
genes acting additively or epistatically. If a
number of genes are hypothesized, the gene-
specific ls (referred to here as lgs) may be
estimated by assuming a model (additive or
epistatic), the number of genes, and parti-
tioning ls accordingly.

Many researchers are accustomed to
evaluating the magnitude of genetic ef-
fects by using ls rather than g. We calcu-
lated lgs corresponding to g # 2 and p 5
0.01, 0.10, 0.5, and 0.8, respectively. The
results indicated that for g # 2, lgs , 1.3.
It has previously been shown that genes

with lgs , 1.3 would be difficult to detect
using sib pair methods (2, 4). The curve
comparing lgs with g shows that even
genes with moderate effect (for example,
lgs , 2) may produce g that can be
detected by linkage analysis in reasonably
sized samples of sib pairs.

These results indicate that linkage
analysis of complex disease based on
genomic screens using current microsatel-
lite markers can be a fruitful enterprise in
complex genetic diseases. An excellent
example is the discovery of the late onset
Alzheimer’s disease susceptibility gene
APOE. Using Risch and Merikangas’s for-
mulas, we calculated the number of sib
pairs that would have been necessary to
detect the effect of APOE on the risk of
AD. The g in individuals heterozygous for
APOE-4 is 4.5 (5) and the frequency of
APOE-4 in the general population is
about 15% (6); the resulting probability of
allele sharing is Y 5 0.625, and the min-
imum number of affected sib pairs required
to detect linkage is 164. Alzheimer’s dis-
ease has an overall ls of 5, with a lgs of
only 2 for APOE (7). Other complex dis-
eases, such as multiple sclerosis (ls 5 30)
(8) and autism (ls 5 150) (9) have sub-
stantial genetic components. Even if there
are 10 epistatic genes of equal multiplica-
tive effect underlying multiple sclerosis
(ls 5 30; lgs 5 1.4), linkage analysis
should be able to detect them. Because it
is difficult to determine a priori which
disease alleles have minor or moderate
genetic effects, linkage analysis should not
be arbitrarily abandoned.

Risch and Merikangas point out that
genomic screening of candidate genes is
several years from becoming reality. When
the molecular resources become available,
the advantages of genomic screening using
TDT, such as increasing power to detect
minor genetic effects, allowing the use of
singleton cases, and testing effects of func-
tional polymorphisms in genes, will make
this the method of choice. Until then,
well-designed linkage studies of complex
traits will still be able to detect genes of
major or moderate effect.
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Risch and Merikangas (1) point out the
efficiency of association studies for statisti-
cal power in identifying genetic markers of
disease. But they limit themselves to studies
of family-based association, affected sib-
pairs, and parental transmission of alleles
and do not mention population-based asso-
ciation studies (either cohort or case-con-
trol). While family-based association stud-
ies do have certain strengths, population-
based studies can be far more efficient in
terms of time, money, and logistics. It can
take much longer to identify and collect
samples from a single affected family than
to collect samples from 10 or 100 patients
with disease. Some studies, such as those of
parental transmission, may not be practical
in adult onset diseases where parents are
deceased. Such practical issues, as well as
our ability to generalize the results to the
larger population, favor the use of popula-
tion-based studies.

Perhaps as important, population-based
studies commonly measure environmental
exposures and can assess gene-environment
interaction, data for which are nearly al-
ways lacking in family-based studies. An
association between a susceptibility gene
and a disease may not be apparent if there is
a second factor required to initiate the dis-
ease process, such as an environmental ex-
posure. Similarly, one may detect the effect
of exposure only among genetically suscep-
tible subpopulations. There are a number of
neurologic and other diseases in which this
model functions, but the cases of genes that
modulate carcinogen-induced cancers (such
as the polymorphic glutathione S-trans-
ferases and N-acetyltransferases) are per-
haps the best examples (2). Simple tests of
gene-disease association are likely to be
misleading without due attention to envi-
ronmental factors.
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Risch and Merikangas make the intriguing
point that, given a relatively small number
of families, the transmission-disequilibrium
test (1) has enough statistical power to
determine if any of a large (in some sense
complete, genome-wide) set of diallelic
markers is associated with a disease. Anoth-
er approach, based on disequilibrium be-
tween marker alleles and disease in a ran-
domly ascertained population sample, can
be considered. Like Risch and Merikangas,
we can show that, when the disease is rel-
atively common, the disease-allele frequen-
cy is intermediate and its effect small, sta-
tistical power comparable to that of stan-
dard family-based linkage studies is
achieved with a smaller number of random-
ly sampled individuals. The sample sizes
required for the disequilibrium method are
generally larger than those for transmission-
disequilibrium, but the random-ascertain-
ment scheme has practical advantages.

If one assumes that p is the probability
that an individual with genotype aa has the
disease, with Aa and AA individuals being,
respectively, g and g2 more likely to devel-
op the disease than aa individuals, one can
show the expected frequencies of four cat-
egories defined by allelic state and disease
status in a random population sample (2).
The association between marker allele A
and disease can be tested with the “chi-
square” statistic. The same statistic can be
used to calculate sample sizes needed to
detect such an association, if indeed it ex-
ists, with a given significance level and
power, for fixed values of p, g, and p,
respectively (3). When the prevalence of
the disease is greater than about 5% and the
disease allele is not rare, the random sample
approach requires no more than 10 times
the number of genotyped individuals in an
affected offspring study (4). Once geno-
typed, the same sample can be used to
study a number of diseases for the addi-
tional, small cost of ascertaining the pres-
ence or absence of a disease in each indi-
vidual. The random sample approach

could be especially useful for efficiently
diagnosed late onset diseases, where it may
not be possible to type parents for affected
offspring studies. Non-insulin-dependent
diabetes and hypertension, with preva-
lences of 6% (5) and 23% (6), respective-
ly, could be effectively studied using this
approach.

A realistic program for mapping disease
markers using the random-ascertainment
scheme may require a prospective design in
which a cohort is fully genotyped and mon-
itored for disease. The successes of the Fra-
mingham Study (7) and others like it show
that large-scale prospective studies are not
beyond reach. The effort required to geno-
type a large sample at many marker loci
seems formidable, but the automated meth-
ods envisioned by Risch and Merikangas
greatly reduce the labor for the random-
ascertainment scheme as well. The utility of
both approaches depends on the existence
of marker alleles strongly associated with
disease-causing polymorphisms, but as yet
the nature and extent of such associations
in the human genome are not well under-
stood (8). Population structure (the result
of admixture or other factors) introduces
complications for simple disequilibrium
methods that are minimized in family-based
transmission-disequilibrium studies (9).
However, if study populations are defined
carefully and data are examined for the
effects of population structure, these diffi-
culties may be balanced by gains in efficien-
cy that accrue when a single large sample is
used to study several diseases.
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Risch and Merikangas (1) show the great
power of genetic association studies such as
the TDT in the detection of genes with
modest effects. As they mention, all TDT
computations were based on the optimal
assumption that the analyzed allele was the
disease allele itself. A more common situa-
tion is, and could well remain, the analysis
of polymorphisms which have a low prior
probability to be the disease allele even if
they are within the actual disease gene. The
power of the TDT is highly dependent not
only on the linkage disequilibrium between
the disease allele and the analyzed allele but
also on the relative frequencies of both
these alleles.

With the same genetic model as that
used by Risch and Merikangas—a disease
locus with two alleles, A and a, with popu-
lation frequencies of p and 1-p, respectively,
and a multiplicative model with genotypic
relative risks of g and g2 for Aa and AA
subjects, respectively—one can assume a
closely linked diallelic marker (recombina-
tion fraction 5 0) with alleles B and b of
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respective frequencies m and 1-m. The co-
efficient of linkage disequilibrium, d, is de-
fined as freq(AB)-pm, and the maximum
value of d, dmax, is reached with freq(AB) is
the lowest of the two frequencies m and p.
The probability that a heterozygous Bb sub-
ject carries A in coupling when B is a1 5 p
1 d/m, and the probability that the same
subject carries A in coupling with b is a2 5
p 2 d/(1 2 m) (2). In a sample of single
affected individuals with their parents, the
probability for a Bb parent to transmit B to
his affected child is P(tr 2 B) 5 [1 1 (g 2
1)a1]/[2 1 (g 2 1)(a1 1 a2)] (3). The
situation described by Risch and Merikan-
gas corresponds to complete linkage dis-
equilibrium, that is, d 5 dmax with m 5 p,
with P(tr 2 B) reducing to g/(1 1 g). In
other cases, the number of necessary fami-
lies increases dramatically as p differs from
m even when d 5 dmax, and also as d
decreases. Thus, the power of association
studies such as the TDT can be quite strong
when there is a high probability that the
allele studied is the causal allele as shown
by Risch and Merikangas. In other cases,
researchers should be aware that the power
of such association studies can be greatly
diminished as soon as the ratio m/p departs
from unity and the linkage disequilibrium
becomes weaker.
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Response: We agree with Scott et al. that
linkage analysis will be able to identify
genes of major, but not genes of modest,
effect. As such, we also agree that linkage
analysis should not be arbitrarily aban-

doned, because undoubtedly it will lead to
the discovery of some important disease
susceptibility genes. However, we do not
agree that linkage analysis can detect most
genes underlying complex diseases, and we
anticipate that few genes for complex dis-
orders will be identified in this fashion.

As indicated by Scott et al., one measure
of the total genetic effect for a complex
disease is ls, the sibling risk ratio (1). How-
ever, it is generally impossible to determine
the number of loci contributing to that
total; if the number is large, even for a large
value of ls, then none of the loci may be
easily detected by linkage analysis.

We showed in our Perspective (2) that
loci which confer a genotypic relative risk g
less than 4 would be difficult or impossible
to identify with current linkage strategies.
The numbers of sib pairs required to detect
linkage that were given in the table in our
Perspective (2, p. 1516) were actually un-
derestimates, for two reasons: (i) There was
an error in the computer program producing
the required number of sib pairs for linkage;
the actual numbers are approximately 50%
larger than given (3); and (ii) the numbers
given correspond to the ideal case of com-
pletely informative markers and no recom-
bination. Allowing for more realistic cir-
cumstances of reduced marker informativ-
ity and moderate recombination, the cor-
rected numbers probably would be about
two to three times larger than given in the
table. Thus, while it is still possible to
detect a locus with g of 4 or greater in a
large family collection (say 500 or more),
loci with smaller values of g are unlikely
to be detected.

How many loci are likely to exist for
complex diseases with g . 4? While it is
difficult to know beforehand, animal mod-
els might offer a clue. As an example, the
non-obese diabetic (NOD) mouse provides
a useful model for human insulin dependent
diabetes mellitus in being genetically com-
plex, having an autoimmune etiology, and
in the importance of the major histocom-
patibility loci. However, backcross experi-
ments have shown that at least 10 other
loci are probably involved in susceptibility,
and only one of these loci had a value of g
greater than 4, with the rest in the range of
2 or less (4). We also note that animal
backcross experiments are more analogous
to human association studies than linkage
studies, and this is why they have been
more successful in identifying susceptibility
loci than human linkage studies.

As indicated by Scott et al., multiple
sclerosis is a complex disease with a pre-
sumed substantial genetic component (5).
However, three recently published genome
screens (6) of moderate size did not produce
clear and replicable evidence of linkage in

any chromosomal region. This lack of sus-
ceptibility loci of large effect in this disease
suggests that a very large number of families
may be required to detect linkage.

The discovery of apoE as a major risk
factor for late onset Alzheimer’s disease is
surely one of the major success stories of
modern human genetics. Thus, it is impor-
tant to evaluate the means by which this
discovery was made. As indicated by Scott et
al., it has been estimated that apoE confers a
ls value of around 2, with some modifica-
tion for age of onset (7). Thus, in theory,
this locus would be identifiable by linkage
analysis with a sufficient number of sib pairs
(several hundred minimum). In fact, the
initial linkage observation on chromosome
19 (8), which produced a lod score of 4, was
based on an analysis with markers that were
likely to be in linkage disequilibrium with
apoE. Performing linkage analysis with a
marker associated with disease leads to an
increase in the lod score (9). Similar linkage
analysis with a nearby marker with little or
no linkage disequilibrium (for example, the
apo CII microsatellite) in the same material
does not produce significant evidence for
linkage (8, 10). Thus, in reality, the “link-
age” discovery on chromosome 19 was actu-
ally based on an association between marker
loci and the disease.

We agree with Scott et al. that genome-
wide association studies will be based on
future rather than current technology (as
indicated in our title), and for the present we
are still limited to the technology that exists.
Although we agree that linkage studies
should continue to be pursued, we also be-
lieve that this approach will produce only a
modest number of loci for complex diseases.

We agree with Bell and Taylor that can-
didate genes are best tested in the frame-
work of a biological hypothesis, often in-
volving an interaction with a predisposing
environmental agent, and the examples
they provide are illuminating [for others,
see (11)]. Also, as they point out, classic
epidemiologic study designs, such as case-
control or cohort, are excellent for testing
such gene-environment interaction effects.
The primary drawback from such designs for
detecting genetic effects, however, is the
potential for confounding, leading to an
incorrect inference of causality for an ob-
served association (12). Specifically, con-
sider a population that has ethnic stratifi-
cation and a tendency toward endogamy
within strata. Further suppose these strata
differ both in disease prevalence and allele
frequencies at an unrelated locus. When
performing a case-control study from such
an admixed population, if the cases and
controls are unbalanced for these strata, an
allele frequency difference between cases
and controls may emerge which is artifac-
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tual and not causal. The solution, of course,
is to precisely match the cases and controls
according to these strata, or to perform a
stratified analysis; such would be possible
with the major ethnic groups such as exist
in the United States. However, further stra-
ta are likely to exist within the major ethnic
groupings (for example, European subgroups
of Caucasians) for which matching and
stratification might generally be quite diffi-
cult. Of course, this problem disappears in a
completely randomly mating population.

This problem can also be solved by re-
sorting to family-based association tests,
such as the TDT we used in our analysis.
This test has been shown to be immune to
confounding due to population stratifica-
tion (13). Also, in the absence of popula-
tion stratification, this test has similar pow-
er to the usual case-control design (14).
Furthermore, cases or families (or both) can
also be classified according to a relevant
environmental exposure and allelic trans-
mission compared across these classes to
search for gene-environment interactions.
We also showed that unless the disease
predisposing allele frequency is high, fami-
lies with more than one affected child can
be substantially more powerful than single-
tons, although they are also likely to be
more difficult to find.

Because of the potential problem of ge-
netic stratification, the optimal design for
searching for genes of modest effect, espe-
cially in the absence of a clear biological
model, is the family-based design, such as
singleton or multiple affected sibs with par-
ents. For early onset diseases, such samples
should not be difficult to obtain, and are
likely worth the potential additional cost.
We would add that precise ethnic matching
in a case-control paradigm can also lead to
increased expense, if achievable at all. In
the situation of late onset diseases, where
parents are usually unavailable, an alterna-
tive design is discordant sib pairs, where
effectively an unaffected sib serves as a con-
trol for the affected sib. This design also
protects against genetic stratification arti-
fact, but may lead to somewhat reduced
power because of the genetic correlation
between sibs (14).

Long et al. suggest a prospective study
design where a random population sample is
subsequently followed for development of
disease. Presumably, at initiation, everyone
in the study is genotyped for a large number
of loci. They show that if the disease is
sufficiently common, reasonable power is ob-
tained by contrasting the allele frequencies
in those who develop the disease with those
that do not. The primary benefit from this
approach is that multiple diseases can be
studied using the same population of sub-
jects, again provided the diseases are suffi-

ciently common. It would appear that a min-
imum frequency of 10% is required to obtain
plausible sample sizes for sufficient power.

There are also several drawbacks to this
approach. First, as for the typical epidemio-
logic paradigms, such as case-control studies,
there is the problem of population substruc-
ture as we have described (in our response to
Bell and Taylor) and also mentioned by
Long et al. Second, with this approach, sam-
ple pooling is not possible, because it is
unknown a priori which individuals will be-
come affected. Thus, this approach requires
construction of individual genotypes, which
can greatly magnify the technical effort. By
contrast, for a typical case-control design,
two pools can be formed—one for affected
individuals, another for those unaffected,
and overall allele frequencies within the two
groups determined. Thus, for a study of n
cases and n controls and t loci, genotypes for
only 2t samples need to be determined as
opposed to 2nt samples (15). The same effi-
ciency may obtain for a family-based design,
such as affected individuals and their par-
ents, where those affected are pooled and
contrasted to the pooled group of parents.
While this approach cannot give the precise
data needed for a TDT analysis, it still pro-
vides a robust, powerful, and efficient means
for initial screening; any positive loci can
subsequently be subjected to individual
genotyping (14).

The approach of Long et al. would not be
practical for rare diseases, for example,
those with a population frequency less than
5%. However, a compromise is possible.
Numerous studies already exist that sample
affected individuals, with parents or unaf-
fected sibs, for a variety of diseases. The
subjects from these studies can be followed
for a variety of other diseases and then
subjected to analysis as they develop these
other, more frequent diseases. Pooling
across studies could then provide sufficient
material.

As indicated by Müller-Myhsok and
Abel, our analysis was based on association
studies where the actual disease predisposing
polymorphism is in hand. This is why we
incorporated such a large number of tested
alleles (1,000,000). We also indicated that
the number of loci to be tested might be
reduceable substantially if one allows for
linkage disequilibrium. However, as pointed
out by Müller-Myhsok and Abel, depending
on linkage disequilibrium is not without risk.
The power of the association test can decline
dramatically as linkage disequilibrium di-
minishes or if the tested allele has a substan-
tially different frequency than the disease
allele. To a large extent, the expectation
with regard to linkage disequilibrium across
the genome is uncharted territory, and thus
it is difficult to predict the power of using a

less dense map at this point in time. How-
ever, we can present two cases that provide
some degree of optimism. The first pertains
to apoE and late onset Alzheimer’s disease.
Several polymorphisms in the apoE region
show strong linkage disequilibrium and com-
parable allele frequencies, allowing associa-
tion to be readily detected with other neigh-
boring polymorphisms (16). A second exam-
ple is the insulin VNTR region of chromo-
some 11p. Several polymorphisms in this
region have been identified showing strong
disequilibrium and similar allele frequencies,
leading to comparable degrees of association
with disease (17).

As genome-wide linkage studies are sup-
planted by genome-wide association studies,
and the distribution of linkage disequilibri-
um across chromosomes and populations is
further explored, the degree to which link-
age disequilibrium as opposed to direct cau-
sality can be utilized to locate disease sus-
ceptibility loci in the genome will become
more apparent.
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